This commit is contained in:
Glenn Y. Rolland 2016-07-27 12:21:02 +02:00
parent 3a4782b32e
commit 6c9ada0614

View file

@ -0,0 +1,91 @@
(* Auto-generated code below aims at helping you parse *)
(* the standard input according to the problem statement. *)
let open Printf in
let debug = fprintf stderr in
let first_turn = ref true in
let old_x = ref 0 in
let old_y = ref 0 in
(* game loop *)
while true do
(* nextcheckpointx: x position of the next check point *)
(* nextcheckpointy: y position of the next check point *)
(* nextcheckpointdist: distance to the next checkpoint *)
(* nextcheckpointangle: angle between your pod orientation and the direction of the next checkpoint *)
let line = input_line stdin in
let x, y, nextcheckpointx, nextcheckpointy, nextcheckpointdist, nextcheckpointangle =
Scanf.sscanf line "%d %d %d %d %d %d" (fun x y nextcheckpointx nextcheckpointy nextcheckpointdist nextcheckpointangle -> (x, y, nextcheckpointx, nextcheckpointy, nextcheckpointdist, nextcheckpointangle))
in
if !first_turn then begin
old_x := x ;
old_y := y ;
first_turn := false
end ;
let d_x = x - !old_x in
let d_y = y - !old_y in
let future_x = x + 2 * d_x in
let future_y = x + 2 * d_y in
let line = input_line stdin in
let opponentx, opponenty = Scanf.sscanf line "%d %d" (fun opponentx opponenty -> (opponentx, opponenty)) in
(* Write an action using print_endline *)
(* To debug: prerr_endline "Debug message"; *)
let ckpt_ray = 600 in
(* You have to output the target position *)
(* followed by the power (0 <= thrust <= 100) *)
(* i.e.: "x y thrust" *)
let is_here = nextcheckpointdist < ckpt_ray in
let is_near = nextcheckpointdist < ckpt_ray * 4 in
let is_far = nextcheckpointdist >= ckpt_ray * 6 in
let is_aligned = nextcheckpointangle > -5 && nextcheckpointangle < 5 in
let is_near_aligned = nextcheckpointangle > -15 && nextcheckpointangle < 15 in
let is_wide_aligned = nextcheckpointangle > -30 && nextcheckpointangle < 30 in
let is_aside = nextcheckpointangle > -60 || nextcheckpointangle < 60 in
let is_behind = nextcheckpointangle >= 90 || nextcheckpointangle <= -90 in
let use_boost = is_aligned && is_far in
let target_x = (future_x + nextcheckpointx) / 2 in
let target_y = (future_y + nextcheckpointy) / 2 in
debug "angle = %d\n%!" nextcheckpointangle ;
let thrust =
(*
if is_aligned && is_far then 100
else if is_aligned && is_near then 80
else if is_near_aligned && is_far then 80
else if is_near_aligned && is_near then 70
else if is_wide_aligned && is_far then 60
else if is_wide_aligned && is_near then 50
else if is_aside then 40
else
*)
if is_aside then 20
else if is_behind then 2
else 100
in
let power_str = match use_boost with
| false -> string_of_int thrust
| true -> "BOOST"
in
printf "%d %d %s\n%!" target_x target_y power_str ;
();
done;